a2 United States Patent

US009336557B2

(10) Patent No.: US 9,336,557 B2

George et al. 45) Date of Patent: May 10, 2016
(54) APPARATUS AND METHODS FOR (56) References Cited
PROCESSING OF MEDIA SIGNALS
U.S. PATENT DOCUMENTS
(71) Applicant: Apple Inc., Cupertino, CA (US) 2011/0054857 A1* 32011 Moguchaya ... 703/
*
(72) Inventors: Brett D. George, Cupf:rtino, CA (US); 583;8523225 i} * 1(7);583 g?:lfgnitoil'
Changki Min, Cupertino, CA (US);
David A. Leech, Cupertino, CA (US); OTHER PUBLICATIONS
Matthew X. Mora, Cupertino, CA (US);)))))
Niel D. Warren, Cupertino, CA (US); Emmanuel Gallo, Nicolas Tsingos. Efficient 3D Audio F’rocessmg on
Rajabali M. Koduri, Cupertino, CA the GPU. ACM Workshop on General Purpose Computing on Graph-
(US); Ronald N. Isaac, Cupertino, CA ics Processors, Aug. 2004, Los Angeles, United States. 2004. <inria-
(US) 00606754>
Whalen, Sean. “Audio and the graphics processing unit” Author
(73) Assignee: Apple Inc., Cupertino, CA (US) report, University of California Davis 47 (2005): 51.*
(*) Notice: Subject to any disclaimer, the term of this * cited by examiner
patent is extended or adjusted under 35)
U.S.C. 154(b) by 384 days. Primary Examiner — Phi Hoang
(74) Attorney, Agent, or Firm — Meyertons, Hood, Kivlin,
(21) Appl. No.: 13/875,215 Kowert & Goetzel, P.C.
(22) Filed: May 1, 2013 1)) ABSTRACT
(65) Prior Publication Data Methods and apparatus for processing media signals. In one
embodiment, a data processing device processes fixed and
US 2013/0293558 Al Nov. 7, 2013 variable rate data using a first and second processing unit. The
A rocessing comprises real-time processing of audio/video
Related U.S. Application Data Is)ignals b}% a graghics processinglimit (GP%) and/or central
(60) Provisional application No. 61/641,827, filed on May processing unit (CPU). The processing units process data
2,2012. efficiently by establishing one processor as always processing
variable rate data, and using one or more schemes for deter-
(51) Int.CL mining processor will process fixed rate data. A shared
GO6l" 15/16 (2006.01) memory enables the processors to communicate with one
GO61 120 (2006.01) another in order to determine which will process the fixed rate
(52) US.CL data. In one scheme for determining which of the processors
CPC ... GO6T 1/20 (2013.01); G10K 2210/3042 will process the fixed rate data the second processor need
(2013.01) merely be unlocked. In another embodiment, the second pro-
(58) Field of Classification Search cessor must be unlocked and immediately available.

None
See application file for complete search history.

20 Claims, 11 Drawing Sheets

Audio Data

Audio/Video Processing Device
300

CPU

302

Audio

Memory
306 Data

Video Data

T_l

GPU

304

U.S. Patent May 10, 2016 Sheet 1 of 11 US 9,336,557 B2

Data Processing Device
Audio - cPu .
Video > GPU >
FIG. 1

(Prior Art)

U.S. Patent May 10, 2016

Sheet 2 of 11

US 9,336,557 B2

Fixed Rate Data

Data Processing Device

200

Variable Rate Data

| Processing

First

Unit
202

Memory
206

Fixed
Rate
Data

Yy

| Processing

Second

Unit
204

Y

FIG. 2

U.S. Patent

May 10, 2016 Sheet 3 of 11

US 9,336,557 B2

Audio/Video Processing Device
300
Audio Data _ CcPU
g 302
) 4
Memory Audio
306 Data
A
A Y
Video Data _ GPU
- 304

FIG. 3

Y

U.S. Patent May 10, 2016 Sheet 4 of 11 US 9,336,557 B2

402
CPU A 406¢
GPU| A 4063 408 A 406b 410 A 406d
i > > > %
Audio Frame Audio Frame Audio Frame 404
412a 412b A 412¢

No outstanding GPU pr_o_cessing

GPU tasks; graphics;
schedule GPU schedule CPU
for audio for audio
processing processing

FIG. 4

U.S. Patent May 10, 2016 Sheet 5 of 11 US 9,336,557 B2

Request

Complete Not Available
Available
SUBMIT Processing

FIG. 5

U.S. Patent May 10, 2016 Sheet 6 of 11 US 9,336,557 B2

Request
Complete
Unlocked

Processing

SUBMIT

FIG. 6

U.S. Patent May 10, 2016 Sheet 7 of 11 US 9,336,557 B2

Request

Unlocked

Not Busy
Complete

Processing

FIG. 7

U.S. Patent May 10, 2016 Sheet 8 of 11 US 9,336,557 B2
Request

Complete Receive Data

Complete

Release

FIG. 8

U.S. Patent

May 10, 2016 Sheet 9 of 11

Y

US 9,336,557 B2

900

’/)

processor in a queue
902

Maintain plurality of first
commands for a second

Y

of second processor
for processing
second commands
904

Determine availability

Yes

Time
remaining?
910

Available?
906

A

Submit second
commands to
second processor
808

Y

Submit second
commands fo
first processor

912

Y

FIG. 9

4

U.S. Patent May 10, 2016 Sheet 10 of 11 US 9,336,557 B2

1000

h 4

Receive data at first
processing unit
1002

Y
Try to lock second
processing unit
1004

Success?
1006

A J A 4

Handle processing Lock second
of first dafa at first processing unit
processing unit 1010
1008
Y
Y 4
Handle processing Submit data to second
of data at first processing unit
processing unit 1016
1014

A4
A

. Continue
Continue

FIG. 10

U.S. Patent

Y

y

May 10, 2016 Sheet 11 of 11 US 9,336,557 B2

1100

Receive request
1102

Locked?
1104

A 4

; Receive data

FIG. 11

US 9,336,557 B2

1
APPARATUS AND METHODS FOR
PROCESSING OF MEDIA SIGNALS

PRIORITY CLAIM

This application claims priority to U.S. Provisional Appli-
cation No. 61/641,827, titled “Apparatus and Methods for
Processing of Media Signals,” and filed May 2, 2012, the
inventors being Brett D. George, Changki Min, David A.
Leech, Matthew X. Mora, Niel D. Warren, Rajabali M.
Koduri, and Ronald N. Isaac, which is incorporated by refer-
ence in its entirety as if fully disclosed herein.

COPYRIGHT

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

FIELD OF THE INVENTION

The present invention relates generally to the field of signal
processing. More specifically, the present invention relates in
one exemplary aspect to methods and apparatus for real-time
processing of audio and video signals by a graphics process-
ing unit and/or a central processing unit.

DESCRIPTION OF RELATED TECHNOLOGY

The evolving capabilities of digital electronics have cre-
ated a significant consumer appetite for multimedia capable
devices (e.g., personal media players, etc.). Unfortunately,
the computationally intensive nature of multimedia requires
that multimedia capable devices must devote significant
resources (e.g., software and/or hardware) for multimedia
processing. Generally, coding and decoding of multimedia
files is handled within specialized so-called “codecs”; soft-
ware codecs and hardware codecs are widely used in many
consumer electronics.

Typical implementations of multimedia capable devices
(such as the iPod, iPhone, iPad, and MacBook, manufactured
by the Assignee hereof) include a number of processing ele-
ments (such as a central processing unit (CPU) and/or one or
more specialized graphics processing units (GPU)), that can
perform codec operations (e.g., compression, decompres-
sion, mathematical transforms, etc.). Most consumer devices
must perform multimedia processing in addition to other
processing tasks (e.g., user interface, network interface,
applications, etc.). Multimedia processing may include pro-
cessing of audio and video signals.

Processing audio signals may include compression/de-
compression and coding/decoding. Other functions may also
be included. Audio processing is a deterministic process, and
can be performed at a substantially fixed rate. Additionally,
most audio codec implementations additionally require that
the audio playback is played at a fixed rate (i.e., the audio
frame rate). In modern computing, audio processing is usu-
ally completed much faster than the audio frame rate requires;
consequently, a CPU can flexibly schedule audio processing
with other CPU tasks. However, in the event that an audio
frame is not processed in time, the processing is “dropped,”
and a skip or glitch in the audio signal can be heard when the
signal is played.

10

15

20

25

30

35

40

45

50

55

60

65

2

Processing video signals may include compressing a digi-
tal signal representation of graphics, and subsequently
decompressing the signal for use at a display apparatus. Other
functions, such as generating 2D and 3D graphics renderings,
may also be included. Video processing is generally unpre-
dictable. For example, encoding and decoding of Motion
Picture Experts Group (MPEG) formatted video media can
significantly vary from frame to frame. In fact, the time
required for video compression/decompression largely deter-
mines the resultant video frame rate. Additionally, video pro-
cessing includes a buffer period such that the video process-
ing will not be “dropped” as easily as occurs in audio
processing.

Further, video processing commands cannot be preempted
(interrupted) once started; i.e., once a GPU starts an instruc-
tion, the GPU must either complete the instruction, or abort
the operation entirely.

Graphics processing is often performed by a GPU, whereas
audio processing typically occurs at the CPU. Hence, a typi-
cal prior art system generally employs one CPU for audio
processing, and one GPU for video processing. For example,
FIG. 1 illustrates one prior art multimedia device for process-
ing video and audio signals. As shown, the prior art multime-
dia device executes audio processing as a software process
executed on a CPU, and performs video processing within a
dedicated GPU.

As illustrated in FIG. 1, during prior art operation, the CPU
executes audio compression/decompression, and the GPU
performs video compression/decompression. Traditional
schemes for GPU operation significantly underutilize the
GPU. Specifically, since graphics processing is unpredict-
able, scheduling tasks around the existing graphics process-
ing burden is problematic. Moreover, while audio processing
could greatly benefit from execution on the GPU (e.g., due to
analogous hardware and software structures, as described in
greater detail hereinafter), the rigid timing requirements of
audio processing bar GPU execution. In particular, incorpo-
rating audio processing within the GPU will likely result in
occasional glitches; for example, when the video processing
prevents audio processing from occurring in a timely fashion.

Accordingly, what is needed is an improved method for
leveraging the GPU processing capabilities, such as for
example when the GPU is idle. Ideally, such implementations
would further maximize the specialized capabilities of the
GPU by assisting in the rendering of audio. However, in order
to maintain the existing level of user experience, GPU assis-
tance should not degrade audio replay (e.g., glitches, exces-
sive time delays, poor fidelity, etc. are unacceptable).

SUMMARY OF THE DISCLOSURE

The present invention addresses the foregoing needs by
providing methods and apparatus for effectively leveraging
GPU processing capabilities.

In a first aspect of the invention, a computerized apparatus
configured to process data is disclosed. In one embodiment,
the apparatus includes: a central processing unit adapted to
process audio data; a graphics processing unit in data com-
munication with the central processing unit and adapted to
process at least audio and video data; a storage device in data
communication with the central and graphics processing
units and configured to enable the central and graphics pro-
cessing units to read and write thereto; and a computer appli-
cation configured to run on the central processing unit. In one
variant, the computer program is configured to, when
executed, utilize information in the storage device to deter-
mine whether the audio data is to be processed at the central

US 9,336,557 B2

3

or the graphics processing unit. The determination is based at
least in part on a locking state of the graphics processing unit
at a time of a request for processing of the audio data is
received.

In another variant, the computerized apparatus is a mobile
wireless device with e.g., touch screen interface and which is
configured to process both audio and video data.

In a second aspect of the invention, apparatus for process-
ing data is disclosed. In one embodiment, the apparatus
includes: a first processing unit adapted to process first data;
a second processing unit adapted to process first and second
data; a storage device adapted to enable the first and second
processing units to read and write thereto; and a computer
application configured to run on the first processing unit. In
one variant, the computer program is configured to, when
executed, utilize information in the storage device to deter-
mine whether the first data will be processed at the first or the
second processing device.

In a third aspect of the invention, a method for efficiently
processing audio and video data at a processing device is
disclosed. In one embodiment, the processing device includes
a central processing unit (CPU) and a graphics processing
unit (GPU), and the method includes: receiving a request for
processing audio data; determining whether the GPU is in a
first operational state; determining whether the GPU is in a
first availability state; when the GPU is in the first operational
state and the first availability state, transmitting the audio data
thereto for processing; and when the GPU is not in both the
first operational state and the first availability state, causing
the audio data to be processed at the CPU.

In a fourth aspect of the invention, a method for delegating
processing of first data from a first to a second processing unit
of a processing apparatus is disclosed. In one embodiment,
the method includes: writing a first plurality of tasks to a
queue associated with the second processing unit, the first
plurality of tasks relating to processing second data at the
second processing unit; performing the first plurality of tasks
at the second processing unit; and determining whether a
second plurality of tasks may be written to the queue, the
second plurality of tasks relating to processing the first data,
and the determination based at least in part on an evaluation of
the first plurality of tasks in the queue and a level of comple-
tion of the performance of the first plurality of tasks.

In a fifth aspect of the invention, a computer readable
apparatus is disclosed. In one embodiment, the apparatus
includes a storage medium having at least one program dis-
posed thereon, the program configured to, when executed,
implement allocation of processing of first and second difter-
ent types of data between two or more processing units.

In a sixth aspect of the invention a processing system is
disclosed. In one embodiment, the system includes both (i)
one or more first type of processors, and (ii) one or more
second type of processor, the first and second types being
different. In one variant, the system is configured for use on a
computerized device that processes both audio and video
data, whether received in a common data stream, or sepa-
rately.

Other features and advantages of the present invention will
immediately be recognized by persons of ordinary skill in the
art with reference to the attached drawings and detailed
description of exemplary embodiments as given below.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects and advantages of the inven-
tion will be apparent upon consideration of the following
detailed description, taken in conjunction with accompany-

10

15

20

25

30

35

40

45

50

55

60

65

4

ing drawings, in which like reference characters refer to like
parts throughout, and in which:

FIG. 1 is a functional block diagram illustrating a prior art
device for processing video and audio signals;

FIG. 2 is a functional block diagram illustrating an exem-
plary data processing device according to one embodiment of
the invention;

FIG. 3 is a functional block diagram illustrating a specific
embodiment of the data processing device of FIG. 2;

FIG. 4 is a graphical representation of one exemplary use
case scenario according to the invention;

FIG. 5 is a functional block diagram illustrating an exem-
plary state machine of a first processing unit of the exemplary
data processing device of FIG. 2 using a first determination
scheme for processing fixed rate data signals;

FIG. 6 is a functional block diagram illustrating an exem-
plary state machine of a first processing unit of the exemplary
data processing device of FIG. 2 using a second determina-
tion scheme for processing fixed rate data signals;

FIG. 7 is a functional block diagram illustrating an exem-
plary state machine of a first processing unit of the exemplary
data processing device of FIG. 2 using a third determination
scheme for processing fixed rate data signals;

FIG. 8 is a functional block diagram illustrating an exem-
plary state machine of a second processing unit of the exem-
plary data processing device of FIG. 2 using any of a first,
second or third determination scheme for processing fixed
rate data signals;

FIG. 9 is a logical flow diagram illustrating an exemplary
method for operating a data processing device according to
the present invention;

FIG. 10 is a logical flow diagram illustrating one embodi-
ment of a method for selecting an entity for processing fixed
rate data signals;

FIG. 11 is a logical flow diagram illustrating one embodi-
ment of a method for processing fixed rate data signals.

All Figures © Copyright 2011 Apple, Inc. All rights
reserved.

DETAILED DESCRIPTION

Reference is now made to the drawings, wherein like
numerals refer to like parts throughout.
Overview

In one salient aspect, the present invention discloses meth-
ods and apparatus for processing media signals. In one exem-
plary aspect, the methods and apparatus enable real-time
processing of audio and video signals by a graphics process-
ing unit (GPU) and/or a central processing unit (CPU).

A data processing device is disclosed which is able to
process fixed and variable rate data using a first and second
processing unit (or CPU and GPU). The processing units of
the exemplary embodiments of the present invention are con-
figured to enable efficient processing of the data by establish-
ing one of the processors for always processing the variable
rate data, and additionally providing one or more schemes for
determining which of the processors will process the fixed
rate data. A memory is shared between the first and second
processors, which enables the processors to communicate
with one another in order for these to determine which pro-
cessor will process the fixed rate data. To that end, the shared
memory may be used for sharing information regarding the
state of the processors to one another and/or another decision-
making entity.

The various schemes for determining which of the proces-
sors will process the fixed rate data may include for example
a scheme for attempting to lock the second processor, which

US 9,336,557 B2

5

would not otherwise be tasked with processing the fixed rate
data. In one embodiment, a decision-making entity continues
to attempt to lock the second processing unit despite it being
currently busy or locked. However, if the data to be processed
is real-time audio data to be processed at a GPU, the foregoing
scheme may result in glitches or skips in the audio output, as
the audio data processing step is halted until the GPU
becomes available. In such instances a second scheme may be
used. In the second scheme, if the processing unit is locked,
the data will be processed at the first processing unit.

In yet another scheme, if an unlocked processor is identi-
fied as being too busy (i.e., having more than a predetermined
amount of processing left to complete) or merely immedi-
ately unavailable, the data will be processed at the first pro-
cessing unit. In other words, the system will once again quit
trying to delegate the task if the processor is unavailable/busy.

FIG. 4 provides a graphical illustration of data being pro-
cessed by a CPU and a GPU. Processes being performed over
time by the CPU are shown in CPU process bar 402. Pro-
cesses being performed over time by the GPU are shown in
GPU process bar 404. Processes 406a-406d represent pro-
cessing of four consecutive blocks of real-time audio data.

At the start of audio frame 412a, the GPU is scheduled to
perform audio process 406a. Upon completion of audio pro-
cess 406a, the GPU is scheduled to perform graphics process
408, representing processing of a block of video data. How-
ever, the GPU completes graphics process 408 before the end
of audio frame 412a. Thus, at the start of audio frame 4125,
GPU process bar 404 is empty, indicating that the GPU has no
scheduled tasks. Therefore, the GPU is scheduled to perform
audio process 4065.

Upon completion of audio process 4065, the GPU is sched-
uled to perform graphics process 410, representing process-
ing of a second block of video data. At the start of audio frame
412c¢, the GPU is still performing graphics process 410.
Because the real-time audio data must be processed immedi-
ately, the system does not wait for the GPU to become avail-
able. Instead, the CPU is scheduled to perform audio process
406¢. The GPU then completes graphics process 410 before
the end of audio frame 412¢, allowing the GPU to be sched-
uled to perform audio process 4064 during the next audio
frame.

Data Processing Device

Referring now to FIG. 2, one exemplary embodiment of a
data processing device 200 consistent with the present inven-
tion is illustrated. The data processing device 200 is config-
ured to process fixed and variable rate data. As shown, the
exemplary device 200 includes a first processing unit 202 and
a second processing unit 204. The first processing and second
processing units may comprise one or more central process-
ing units (CPU), graphics processing units (GPU), digital
signal processors (DSP), field-programmable gate arrays
(FPGA), and/or complex programmable logic devices
(CPLD), etc. The processing units 202, 204 of the present
invention are configured to enable efficient processing of the
data by establishing one of the processors for always process-
ing the variable rate data, and additionally providing one or
more schemes for determining which of the processors will
process the fixed rate data. In the illustrated embodiment, the
first processing unit 202 receives the fixed rate data from a
source entity (not shown), and the second processing unit 204
receives the variable rate data from the source entity. Hence,
although the second processing unit 204 is responsible for
processing all of the variable rate data, it may receive fixed
rate data from the first processing unit 202 for processing as
well.

5

10

15

20

25

30

35

40

45

55

60

6

A memory 206 is shared between the first and second
processors 202, 204. The memory 206 enables the processors
to communicate with one another in order for these to deter-
mine which processor will process the fixed rate data. The
memory 206 is suitable for transferring codec operations and
data and codec results between the first and second proces-
sors. As will be discussed in greater detail below, in one
exemplary embodiment, commands are placed in a queue (or
bin) of the shared memory 206. The commands relate to tasks
which are to be performed by the second processor 204 (i.e.,
the processor which will take on fixed rate data processing in
addition to variable rate data processing functions). The
shared memory may utilize a first in, first out (FIFO) or last in,
first out (LIFO) method for eliminating tasks therefrom.
Additionally, the queue on the shared memory 206 may be
utilized by the processors as an indicator of whether one or the
other processor is currently busy (i.e., has tasks to perform).

Additionally (as will be discussed in greater detail below),
the shared memory or other means of communication
between the processors may be used for sharing information
regarding the state of the processors to one another. The state
information exchange may occur by one processor querying
the other, or by one or the other processor simply providing
the information to the other (such as periodically, or as a
change is made).

Various user interface components (e.g., video display,
camera, speaker, microphone, etc.) of the device 200 have
been omitted for clarity. In some embodiments, such user
interface components may include other user interface func-
tions, including but not limited to: touch screen input, key-
board input, mouse input, etc.

In one specific implementation, the data processing device
may comprise an audio/video processing device 300 as illus-
trated in FIG. 3. The data processed in this embodiment
comprises audio/video data of various codec including, with-
out limitation, those of the MPEG (e.g., MPEG-1, MPEG-2,
MPEG-4/H.264, etc.), Real (RealVideo, etc.), AC-3 (audio),
DiVX, XViD/ViDX, Windows Media Video (e.g., WMV 7, 8,
9, 10, or 11), ATI Video codec, or VC-1 (SMPTE standard
421M) families. The audio/video processing device 300 of
FIG. 3 generally comprises at least one central processing
unit (CPU) 302 and at least one graphics processing unit
(GPU) 304.

Audio data is provided to the CPU 302 from a source entity
(not shown). The audio data may be processed by the CPU
302 or alternatively provided to the GPU 304 for processing.
The GPU 304 is additionally responsible for processing all
video data. Hence, the GPU 304 receives video data from the
source entity also. The audio and video data may be stored as
a series of audio and video codec operations on a storage
apparatus. The storage entity containing the multimedia file
(audio/video data) may be associated with the device 200, or
located remotely therefrom. Alternatively, the multimedia file
may be streamed from a content delivery network or read
from a physical media.

Furthermore, as illustrated in FIG. 3, the CPU 302 and
GPU 304 share one or more memories 306. As noted above,
the shared memory 306 enables the CPU 302 and GPU 304 to
communicate with one another. Audio processing tasks may
be posted by the CPU 302 to a queue on the shared memory
for completion by the GPU 304. Additionally, as disclosed
elsewhere herein, the CPU 302 may read the queue of the
memory 306 to determine whether the GPU 304 is busy (i.e.,
has one or more processing tasks to perform).

In one exemplary embodiment, commands are placed in a
queue (or bin) of the shared memory 206, 306. For example,
the memory may be segmented such that a first portion of the

US 9,336,557 B2

7

memory may only be read by the first processor and written to
by the second processor, and a second portion of the memory
may only be read by the second processor and written to by
the first processor. In this manner, tasks to be completed by
the second processor may be listed in the first portion of the
memory and the first processor may place additional tasks for
completion by the second processor into the second portion of
the memory. In one exemplary embodiment, the foregoing
arrangement may be used to cause a second processor 204 to
take on fixed rate data processing (as instructed to by the first
processor 202) in addition to its variable rate data processing
functions. For example, a GPU 304 may be instructed to
process audio data.

As noted above, the shared memory 206, 306 may utilize
FIFO or LIFO methods for eliminating tasks from the second
processor 204 or GPU 304 queue. Also as noted above, the
queue on the shared memory may be utilized by the proces-
sors as an indicator of whether one or the second processor
204 or GPU 304 is currently busy (i.e., has tasks to perform).

Furthermore, as was noted above with respect to the pro-
cessors 202, 204 of the device 200 of FIG. 2, the GPU 204 and
CPU 202 may exchange state information via a common
interface in the shared memory 206, 306.

The state information is useful in enabling the processing
device 200, 300 to determine whether to process the fixed rate
data at the first or second processor. In the embodiment of
FIG. 3, this determination relates to where the audio data will
be processed, either at the CPU 202 or at the GPU 204. The
processing device 200, 300 may use one of a plurality of
schemes for making the determination as illustrated by the
state diagrams of FIGS. 4-7.

As discussed herein, the first processor may in one embodi-
ment comprise a CPU and the second processor may in one
embodiment comprise a GPU (as illustrated in FIG. 3 above).
However, other processing entities may utilize the herein-
described methods with equal success.

Referring now to FIG. 5, a first embodiment of a state
diagram of the decision-making entity using a first scheme to
determine whether to cause data to be processed at a first 202
or second 204 processor is illustrated. In one embodiment, the
decision-making entity comprises the first processing unit
202 of'the processing device 200. Alternatively, the decision-
making entity may comprise the CPU 302 of the audio/video
processing device 300. In the instance the processing com-
prises processing of audio/video data, a decision-making
entity uses the first scheme (illustrated by the state diagram of
FIG. 5) to determine whether the GPU 204 or CPU 202
should process audio data.

In the illustrated embodiment, the decision-making entity
(first processor 202 or CPU 302) has three states: IDLE,
LOCK and SUBMIT. The decision-making entity is in the
IDLE state when no requests are pending. A request occurs
when data is identified as needing to be processed. The
request to the decision-making entity to process data triggers
the decision-making entity to transition to the LOCK state. In
the LOCK state, the decision-making entity attempts to lock
the second processor 204 (or GPU 304) for performing the
requested processing. According to this embodiment, the
attempts to lock the second processor 204 continue until the
processor 204 is available. That is, if the processor 204 is
locked (such as by being in use for processing other data), the
decision-making entity will continue its attempts to lock the
second processor 204 until it becomes available (i.e., com-
pletes its current processing cycle and is unlocked or
released). Once the decision-making entity succeeds to lock
the second processor 204, it transitions to a SUBMIT state. At
the SUBMIT state, the decision-making entity provides the

10

15

20

25

30

35

40

45

50

55

60

65

8

data which is to be processed to the second processor 204. The
second processor 204 processes the submitted data as neces-
sary. When processing is complete, the decision-making
entity transitions back to IDLE and awaits another request.

In the foregoing embodiment, as noted, the decision-mak-
ing entity will continue to attempt to lock the second process-
ing unit 204 despite it being currently busy or locked. How-
ever, in the instance the data to be processed is real-time audio
data, such a scheme may result in glitches or skips in the audio
output, as the audio data processing step is halted until the
GPU 204 becomes available.

In order to rectify the aforementioned problem with skip-
ping and/or glitches, a second embodiment of a state diagram
of'the decision-making entity (such as the first processor 202
orthe CPU 302) using a second scheme to determine whether
to cause data to be processed at the first 202 or second 204
processing units (e.g., CPU 302 or GPU 304) is illustrated in
FIG. 6. As shown, the exemplary implementation of the deci-
sion-making entity according to the second scheme may have
three distinct states: IDLE, TRY LOCK and SUBMIT. As was
discussed above, the decision-making entity remains in the
IDLE state until a request for processing data is received.
When a request is received, the decision-making entity tran-
sitions to a TRY LOCK state. In the TRY LOCK state, the
decision-making entity attempts to discover whether the sec-
ond processing unit 204 (or GPU 304 in the embodiment of
FIG. 3) is currently locked. If the second processing unit 204
is locked, the decision-making entity returns to its IDLE state
and causes the first processing unit 202 (or CPU 302) to
perform the requested data processing. In other words,
according to this embodiment, if the second processing unit
which is not generally used for processing the type of data
which is to be processed is locked, the decision-making entity
will default back to the processing unit which is normally
used for processing that type of data.

Alternatively, if the second processing unit 204 is not
locked, the decision-making entity transitions to the SUB-
MIT state. In the SUBMIT state, the decision-making entity
causes the data to be processed to be transmitted to the second
processing unit 204 for processing there. In one embodiment,
the decision-making entity may cause the data to be transmit-
ted from the first processing unit 202 to the second processing
unit 204. When processing at the second processing unit 204
is complete, the decision-making entity transitions back to its
IDLE state and awaits another processing request. In an alter-
native embodiment, the completion of submission of the data
to the second processing unit 204 may trigger the decision-
making entity to transition back to IDLE. In other words, the
decision-making entity need not wait for data processing to be
completed at the processing unit in order to transition to IDLE
and/or accept another processing request.

In the embodiment of FIG. 6, there remains a possibility
that the second processing entity 204, although unlocked may
still have one or more tasks to complete before it will be
available to process the data sent to it via the decision-making
entity. Thus, at the time the processing unit 204 is accessed, it
may not be able to immediately begin processing data. In the
instance that the GPU 204 is being requested to process audio
datain real time, the GPU 204 being busy (as may occur in the
embodiment of FIG. 6) creates a problematic lag in process-
ing.

To avoid the aforementioned lag, a third exemplary scheme
illustrated by state diagram of FIG. 7 may be used. As shown,
the decision-making entity according to this embodiment has
the following four states: IDLE, TRY LOCK, CHECK BIN,
and SUBMIT. The decision-making entity remains in IDLE
until a request for processing data is received. When the

US 9,336,557 B2

9

request is received, the decision-making entity transitions to
the TRY LOCK state, where it is determined whether the
second processing unit 204 is currently locked or unlocked. If
the second processor 204 is locked, the decision-making
entity returns to its IDLE state and causes the data to be
processed at the first processor 202. Alternatively, if the sec-
ond processor 204 is not locked, the decision-making entity
transitions to the CHECK BIN state.

At the CHECK BIN state, the decision-making entity
determines whether the second processing entity 204 cur-
rently has tasks which it must complete in its queue (or bin).
In other words, the decision-making entity determines
whether the processor 204 is busy or immediately available.
This may be accomplished by reviewing pending tasks in the
shared memory (discussed elsewhere herein). If the second
processor 204 is busy, the decision-making entity transitions
back to the IDLE state and causes processing to be completed
at the first processing entity 202. Alternatively, if the second
processing unit 204 is not busy (i.e., has no tasks to complete
in its queue), the decision-making entity transitions to the
SUBMIT state and causes the data to be transmitted to the
second processing entity 204 for processing. Once processing
or submission is complete, the decision-making entity tran-
sitions back to IDLE and is ready to receive another process-
ing request.

Referring now to FIG. 8, an exemplary state machine for
the second processing entity 204 (or GPU 304) is illustrated.
Itis noted that the exemplary state machine of FIG. 8 remains
unchanged regardless of whether the first, second or third
scheme is employed by the decision-making entity.

As shown, the second processor 204 rests in IDLE until a
request is received. Upon receipt of a request from the deci-
sion-making entity, first processor 202, or CPU 302 to do so,
the second processor 204 is transitioned to a LOCK state. In
one variant, the second processor 204 is only locked if the
decision-making entity has determined that the resource will
be used for data processing. In another variant, the GPU 204
may only be locked for a short period of time, and then
released. This may occur, for example, if the decision-making
entity locks a previously unlocked second processor 204 dur-
ing the time that is used to determine whether the second
processor’s 204 queue or bin has one or more outstanding
tasks. If the bin is full, the second processor 204 may be
released, thus causing the processor 204 to transition back to
an UNLOCK state. Upon receipt of the data to be processed,
the second processor 204 is transitioned from the LOCK state
to a PROCESS state, in which it processes the data. When
processing is complete, the second processor transitions to an
UNLOCK state, and then back to its IDLE state, where it
awaits another request.

Exemplary Methods

FIG. 9 illustrates a generalized method 900 for processing
data using at least two processors. In one exemplary embodi-
ment the processed data comprises at least one fixed rate data
stream, and at least one variable rate data stream. Further-
more, in one such variant at least one of the data streams
cannot be preempted.

The first step in the method (step 902) is to maintain a first
plurality of outstanding commands to be submitted to a sec-
ond processor. Common implementations of such a first plu-
rality of outstanding commands include, but are not limited
to, arrays, linked lists, hash tables, heaps, B-trees, red-black
trees, stacks, and queues. In one embodiment, the plurality of
outstanding commands to be submitted to the second proces-
sor includes graphics commands, although it will be appreci-
ated that other types of commands may be used as well, or in
place of, the aforementioned graphics commands. In another

20

25

30

40

45

50

55

10

embodiment, the plurality of outstanding commands to be
submitted to the second processor comprises a variable frame
rate. In other embodiments, a plurality of outstanding com-
mands is maintained for a second processor, where the second
processor comprises a GPU, a CPU, a DSP, an FPGA, or a
CPLD.

The second step in the method (step 904) includes, prior to
the submission of one of a second plurality of outstanding
commands, determining whether one of the first plurality of
commands is outstanding for the second processor. In some
embodiments of the present invention, the second plurality of
outstanding commands comprises audio processing com-
mands. In a second embodiment, the second plurality of out-
standing commands comprises fixed rate processing com-
mands. In another embodiment, the second plurality of
outstanding commands comprises real-time processing com-
mands. In another embodiment, the second plurality of out-
standing commands utilizes an interrupt, a busy signal, a
timer, or another technique to determine whether or not one of
the first plurality of commands is outstanding for the second
processor.

The third step in the method (step 906) is to determine
whether the second processor is available. If the second pro-
cessor is available, per step 908, one of the second plurality of
outstanding commands is submitted to the second processor
for processing. In one embodiment, the second plurality of
commands comprises audio commands, and the second pro-
cessor comprises a GPU.

Ifthe second processor is not available, then the fourth step
in the method (step 910) is to determine whether the second
plurality of commands can accommodate a delay to wait for
the second processor to become available. In some embodi-
ments, additional advantages may result from processing the
second plurality of commands on the second processor. For
example, the second processor may consume less power than
the first processor. Thus, it may be beneficial for to wait for the
second processor to become available. However, because the
second plurality of outstanding commands may comprise
fixed rate processing commands in some embodiments, pro-
cessing of the next command of the second plurality of com-
mands may need to begin within a fixed amount of time. If
sufficient time remains before the processing must begin, the
method returns to step 906, and determines again whether the
second processor has become available. In some embodi-
ments, a time delay may pass before returning to step 906. If
insufficient time remains, then one of the second plurality of
outstanding commands is submitted to the first processor, per
step 912. In one embodiment, the first processor comprises a
CPU.

FIG. 10 illustrates a detailed, exemplary embodiment of a
method 1000 for selecting an entity for processing fixed rate
data signals. Per step 1002 of the method, data for processing
is received at a first processing entity. The processing may
comprise, for example, the first processor 202 of FIG. 2 or the
CPU 302 of FIG. 3. Additionally, the data in one exemplary
embodiment may comprise audio data or other fixed rate data
to be processed in real time.

Per step 1004, an attempt is made to lock the second pro-
cessor (processor 204 or GPU 304). If the attempt to lock the
second processor is not successful (step 1006), then, per step
1008, the processing of the data is handled at the first proces-
sor. [f however, the attempt to lock the second processor (step
1006) is successful, then per step 1010, the second processor
is locked.

Next, at step 1012, it is determined whether the second
processor is busy. The availability of the second processor
may comprise immediate availability (i.e., an instance where

US 9,336,557 B2

11

there are no pending tasks for the processor to complete).
Alternatively, one or more business rules may be imple-
mented for determining whether the availability of the second
processor is sufficient. For example, it may be determined
that a certain amount of time estimated to complete process-
ing on outstanding tasks or number of remaining tasks may be
acceptable and still meet the real-time or other requirements
for processing the data.

If'the second processor is too busy or unavailable to imme-
diately handle processing of the data, per step 1014, process-
ing of the data is handled at the first processor. If, however, the
second processor is available or not too busy, the data will be
transmitted to the second processing unit for processing.

FIG. 11 illustrates an exemplary embodiment of a method
1100 for processing fixed rate data signals. In one embodi-
ment, the method of FIG. 11 is performed at the second
processing entity 204 or GPU 304.

Per step 1102, a request is received at the second process-
ing unit to process content. In one embodiment, the data to be
processed comprises audio data to be processed in real-time
by a GPU 304. Alternatively, the data may comprise any fixed
rate data to be processed by a second processor 204 which
does not ordinarily process that type of data.

If the processor is locked (step 1104), the method ends. In
one embodiment, this may mean handling processing of the
data at a different entity (such as at a first processor 202 or
CPU 302). In another embodiment, if the processor is locked,
after a pre-determined period of time, additional attempts to
determine whether the processor remains locked are made.

If the processor is not locked (step 1104), at step 1106 it is
locked by the requesting entity (such as a decision-making
entity discussed above, a first processor 202, or a CPU 302).
Next, it is determined whether the processor is busy (step
1108). As noted above, the determination of the processor’s
availability may be immediate, such that any pending tasks
disqualify the processor as being available. Alternatively, the
availability of the processor may be a function of the time
needed to complete processing any pending tasks and/or the
number of outstanding tasks to be completed. If the processor
is busy, the method ends. In one embodiment, this may entail
waiting until the processor is no longer busy, or simply han-
dling processing of the data at a different entity (such as e.g.,
the first processor 202 or CPU 302).

If'the processor is not busy, the processor receives the data
to be processed at step 1110, and processes the data at step
1112. When processing is completed, the processor may be
unlocked at step 1114.

It will be recognized that while certain aspects of the inven-
tion are described in terms of a specific sequence of steps of
a method, these descriptions are only illustrative of the
broader methods of the invention, and may be modified as
required by the particular application. Certain steps may be
rendered unnecessary or optional under certain circum-
stances. Additionally, certain steps or functionality may be
added to the disclosed embodiments, or the order of perfor-
mance of two or more steps permuted. All such variations are
considered to be encompassed within the invention disclosed
and claimed herein.

While the above detailed description has shown, described,
and pointed out novel features of the invention as applied to
various embodiments, it will be understood that various omis-
sions, substitutions, and changes in the form and details of the
device or process illustrated may be made by those skilled in
the art without departing from the invention. This description
is in no way meant to be limiting, but rather should be taken

40

45

55

60

12

as illustrative of the general principles of the invention. The
scope of the invention should be determined with reference to
the claims.

What is claimed is:

1. A computerized apparatus configured to process data,
comprising:

a central processing unit configured to process audio data;

a graphics processing unit in data communication with the

central processing unit, and configured to process at
least audio and video data;

a delegating entity configured to:

select one of the central processing unit or the graphics
processing unit to process the audio data, wherein the
selection is based at least in part on a locking state of
the graphics processing unit at a time that arequest for
processing of the audio data is received; and

cause the audio data to be processed at the selected one
of the central processing unit or the graphics process-
ing unit.

2. The apparatus of claim 1, wherein the delegating entity
is the central processing unit.

3. The apparatus of claim 2, wherein the delegating entity
is configured to select the graphics processing unit to process
the audio data in response to the delegating entity determining
that the graphics processing unit is in an unlocked state.

4. The apparatus of claim 2, wherein the delegating entity
is configured to select the graphics processing unit to process
the audio data in response to the delegating entity determining
that the graphics processing unit is in an unlocked state and
that the graphics processing unit is immediately available to
process the audio data.

5. The apparatus of claim 2, wherein causing the audio data
to be processed by the graphics processing unit comprises:

placing the graphics processing unit in a locked state; and

transmitting the audio data to the graphics processing unit
for processing.

6. A method for efficiently processing audio and video data
at a processing device comprising a central processing unit
(CPU) and a graphics processing unit (GPU), the method
comprising:

receiving a request for processing audio data;

determining whether the GPU is in a first operational state;

determining whether the GPU is in a first availability state;

when the GPU is determined to be in the first operational
state and the GPU is determined to be in the first avail-
ability state, transmitting the audio data to the GPU for
processing; and

when the GPU is not in both the first operational state and

the first availability state, causing the audio data to be
processed at the CPU.

7. The method of claim 6, wherein the first operational state
comprises an unlocked state of the GPU and wherein the first
availability state comprises an immediately available state.

8. The method of claim 6, wherein the first operational state
comprises an unlocked state of the GPU and wherein the first
availability state comprises an availability determined to be
sufficient for processing the audio data.

9. The method of claim 6, further comprising, when the
GPU is determined to be in the first operational state, chang-
ing the operational state to a second operational state.

10. The method of claim 9, wherein the second operational
state comprises a locked state.

11. The method of claim 6, wherein the receiving and the
determining are performed by the CPU.

12. A non-transitory computer readable memory medium
comprising program instructions for delegating processing of
audio data from a central processing unit (CPU) to a graphic

US 9,336,557 B2

13

processing unit (GPU) of a processing apparatus, wherein the
program instructions are executable to:

write a first plurality of tasks to a queue, wherein the queue

is associated with the GPU, wherein the tasks are execut-
able by the GPU;
identify a second plurality of tasks relating to processing
the audio data, wherein each of the CPU and the GPU is
capable of executing the second plurality of tasks;

determine whether the second plurality of tasks should be
written to the queue, wherein the determining is based at
least in part on a level of completion of the performance
of' the first plurality of tasks by the GPU;

inresponse to determining that the second plurality of tasks

should be written to the queue, write the second plurality
of'tasks to the queue.

13. The non-transitory computer readable memory
medium of claim 12, wherein the program instructions are
further executable to:

inresponse to determining that the second plurality of tasks

should not be written to the queue, cause the CPU to
perform the second plurality of tasks.

14. The non-transitory computer readable memory
medium of claim 12, wherein the program instructions are
executed by the CPU.

15. The non-transitory computer readable memory
medium of claim 12, wherein, in determining that the second
plurality of tasks should be written to the queue, the program
instructions are executable to determine that none of the first
plurality of tasks remain in the queue.

16. The non-transitory computer readable memory
medium of claim 15, wherein in determining that the second

10

15

20

25

14

plurality of tasks should be written to the queue, the program
instructions are executable to determine that performance of
the first plurality of tasks is complete.

17. The non-transitory computer readable memory
medium of claim 12, wherein, in determining that the second
plurality of tasks should be written to the queue, the program
instructions are executable to:

determine that at least a subset of the first plurality of tasks

remain in the queue;

determine, in response to the determining that at least a

subset of the first plurality of tasks remain in the queue,
that processing of the second plurality of tasks may be
delayed by a first amount of time without causing errors
in the audio data;

determine, before the first amount of time elapses, that

none of the first plurality of tasks remain in the queue.

18. The non-transitory computer readable memory
medium of claim 12, wherein the determining is further based
on a current state of the GPU.

19. The non-transitory computer readable memory
medium of claim 18, wherein, in determining that the second
plurality of tasks should be written to the queue, the program
instructions are executable to determine that the GPU is in an
unlocked state.

20. The non-transitory computer readable memory
medium of claim 19, wherein the program instructions are
further executable to:

in response to the determining that the GPU is in an

unlocked state, place the GPU in a locked state.

#* #* #* #* #*

